US009128895B2

a2z United States Patent (10) Patent No.: US 9,128,895 B2
Chan et al. (45) Date of Patent: Sep. 8, 2015
(54) INTELLIGENT FLOOD CONTROL g,igz,gg : }(1); }gg‘s‘ élaiwag Fetal
K s 1evendortt et al.
MANAGEMENT 5,627,764 A 5/1997 Schutzman et al.
. 5,649,102 A 7/1997 Yamauchi et al.
(75) Inventors: Wilson Chan, San Mateo, CA (US); 5,721,825 A 2/1998 TLawson et al.
Angelo Pruscino, Los Altos, CA (US); 5,754,841 A 5/1998 Carino, Jr.
. 5,774,668 A 6/1998 Choquier et al.
TSIS{ Fg'lllg wafg’lg{edWSOOd Clt}{’ CéA‘A 5790807 A §/1998 Fishier et al.
(US); Cheng-Lu Hsu, Sunnyvale, 5,802,253 A 9/1998 Gross et al.
(Us) 5,828,835 A 10/1998 Isfeld et al.
5,852,818 A 12/1998 Guay et al.
(73) Assignee: ORACLE INTERNATIONAL g,gg%,gég : % }ggg geft:rcrll et alt~ |
)) 101 an €t al.
CORPORATION, Redwood Shores, 5867667 A /1999 Butman ei al.
CA (US) 5,870,559 A 2/1999 Leshem et al.
5,870,562 A 2/1999 Butman et al.
(*) Notice: Subject to any disclaimer, the term of this 5,878,056 A 3/1999 Black et al.
patent is extended or adjusted under 35 g’ggé’?g; ﬁ g; }ggg g‘{gnanjet a{ .
,890, ridge, JIr. et al.
US.C. 154(b) by 0 days. 59018050 A 6/1999 Tavallaei et al.
5,933,604 A 8/1999 Inakoshi
(21) Appl. No.: 12/389,306 5940,839 A 81999 Chen et al.
(22) Filed: Feb. 19,2009 (Continued)
OTHER PUBLICATIONS
(65) Prior Publication Data
Ravi Kokku et al., “Half-pipe Anchoring: An Efficient Technique for
US 2010/0211681 Al Aug. 19,2010 Multiple Connection Handoff;” Proceedings 10" International Con-
51) Int.Cl ference on Network Protocols, Nov. 12, 2002, XP010632563, 10
nt. CI.
pages.
GO6F 15/173 (2006.01) (Continued)
(52) US.CL
C.PC e GO6F 15/173 (2013.01) Primary Examiner — Lan-Dai T Truong
(58) Field of Classification Search (74) Attorney, Agent, or Firm — Hickman Palermo Becker
USPC ... 709/226, 212,213, 214, 215, 227, 229, Bingham LLI; ’
709/216
See application file for complete search history. (57) ABSTRACT
56 References Cited Described herein are techniques for dynamically monitorin
(56) q y y g
and managing resource usages of processes running on a node
U.S. PATENT DOCUMENTS in a multi-node database system. High resource usages of
4318182 A 3/1982 Bachman et al prolziesses cellln be %oactiviy dete.cte(.iﬁand eillei:/iated, 1Ihere‘t;ly
5113522 A 5/1992 Dinwiddic et al. ma : ng such a node to perform signmificantly better than oth-
5222217 A 6/1993 Blount et al. erwise.
5,283,856 A 2/1994 Gross et al.
5,347,632 A 9/1994 Filepp et al. 20 Claims, 4 Drawing Sheets

monitor a plurality of resource
usages on a node in a multi-node
system 310

determine whether one or more
resource usages in the plurality
of resource usages are
high 320

in response to determining that
one or more resource usages in the
plurality of resource usages are
high, implement one or more
resource reduction policies 330

US 9,128,895 B2

Page 2
(56) References Cited 7,165,252 B1* 1/2007 XU oo 718/102
7,174,379 B2 2/2007 Agarwal et al.
U.S. PATENT DOCUMENTS 7,177,866 B2 2/2007 Holenstein et al.
7,178,050 B2 2/2007 Fung et al.
5,951,694 A 9/1999 Choquier et al. 7,243,256 B2 7/2007 Kaiya et al.
5970439 A 10/1999 Levine et al. 7,263,590 Bl 82007 Todd et al.
5,995,980 A 11/1999 Olson et al. 7,269,157 B2 9/2007 Klinker et al.
5,999,931 A 12/1999 Breitbart et al. 7,359,910 B2 4/2008 Wu et al.
6,026,430 A 2/2000 Butman et al. 7,424,396 B2 9/2008 Dodeja et al.
6,020,205 A 2/2000 Alferness et al. 7,506,215 Bl 3/2009 Maw et al.
6,035,379 A 3/2000 Raju et al. 7,590,746 B2* 9/2009 Slateretal. 709/229
6,041,357 A 3/2000 Kunzelman et al. 7,617,257 B2 11/2009 Sathyanarayan et al.
6058380 A 52000 Chandra et al. 7,627,618 B2* 12/2009 Honigfort
6,067,540 A 5/2000 Ogzbutun et al. 8,117,505 B2 2/2012 Sridharan et al.
6,073,129 A 6/2000 Levine et al. 8,321,478 B2 11/2012 Fong
6.088.728 A 7/2000 Bellemore et al. 8,555,274 B1* 10/2013 Chawlaetal. 718/1
6’178’529 Bl 1/2001 Short et al. 2001/0032137 Al 10/2001 Bennett et al.
6:182:086 Bl 1/2001 Lomet et al. 2001/0047270 Al 112001 Gusick et al.
6,185,555 Bl 2/2001 Sprenger et al. 2001/0052137 Al 12/2001 Klein
6,188,699 Bl 2/2001 Lang etal. 2001/0056493 Al 12/2001 Mineo
6,192,378 Bl 2/2001 Abrams et al. 2002/0049845 Al 4/2002 Sreenivasan et al.
6,222,840 Bl 4/2001 Walker et al. 2002/0052885 Al 52002 Levy
6,243,751 Bl 6/2001 Chatterjee et al. 2002/0073019 Al 6/2002 Deaton
6.247.017 Bl 6/2001 Martin 2002/0073139 Al 6/2002 Hawkins et al.
6:304’882 Bl 10/2001 Strellis et al. 2002/0091685 Al 7/2002 Feldman et al.
6,327’622 Bl 12/2001 Jindal et al. 2002/0112008 Al 8/2002 Christenson et al.
6,334:1 14 B1 12/2001 Jacobs et al. 2002/0116457 Al 8/2002 Eshleman et al.
6,338,074 Bl 1/2002 Poindexter et al. 2002/0129157 Al 9/2002 Varsano
6.393.423 Bl 5/2002 Goedken 2002/0133507 Al 9/2002 Holenstein et al.
6’427’146 Bl 7/2002 Chu 2002/0138582 Al 9/2002 Chandra et al.
6’442’568 Bl 8/2002 Velasco et al. 2002/0144010 Al 10/2002 Younis et al.
6’466’950 Bl 10/2002 Ono 2002/0152305 Al* 10/2002 Jacksonetal. 709/224
6:473:794 Bl 10/2002 Guheen et al. 2002/0161896 Al 10/2002 Wen et al.
6.490.574 Bl 12/2002 Bennett et al. 2002/0194015 Al 12/2002 Gordon et al.
6’493’826 Bl 12/2002 Schofield et al. 2002/0194081 Al 12/2002 Perkowski
6:515’968 Bl 2/2003 Combar et al. 2003/0005028 Al 1/2003 Dritschler et al.
6 519’571 Bl 2/2003 Guheen et al. 2003/0007497 Al 1/2003 March et al.
6’529,932 Bl 3/2003 Dadiomov et al. 2003/0014523 Al 1/2003 Teloh et al.
6’536’037 Bl 3/2003 Guheen et al. 2003/0037029 Al 2/2003 Holenstein et al.
6:539:381 Bl 3/2003 Prasad et al. 2003/0037146 Al 2/2003 O’Neill
6,549,922 Bl 4/2003 Srivastava et al. 2003/0039212 A1 2/2003 Lloyd et al.
6,556,659 Bl 4/2003 Bowman-Amuah 2003/0046421 Al 3/2003 Horvitz et al.
6,560,592 Bl 5/2003 Reid et al. 2003/0061260 Al* 3/2003 Rajkumar ... 709/104
6.587.866 Bl 7/2003 Modi et al. 2003/0088671 Al 5/2003 Klinker et al.
6:601:083 Bl* 7/2003 Reznak oo 718/104 2003/0108052 Al 6/2003 Inoue et al.
6.601.101 Bl 7/2003 2003/0110085 Al 6/2003 Murren et al.
6.621.083 B2* 9/2003 Cole v 250/338.1 2003/0135523 Al 7/2003 Brodersen et al.
6,647,514 B1* 11/2003 Umberger et al. 714/42 2003/0135609 Al 7/2003 Carlson et al.
6.651.012 B1 11/2003 Bechhoefer 2003/0161468 Al 8/2003 Iwagaki et al.
6’654’907 B2 11/2003 Stanfill et al. 2003/0177187 Al 9/2003 Levine et al.
6’658’596 Bl 12/2003 Owen 2003/0208523 Al 11/2003 Gopalan et al.
6:691,155 B2 2/2004 Gottfried 2003/0212657 Al 112003 Kaluskar et al.
6.697.791 B2 2/2004 Hellerstein et al. 2003/0212670 Al 11/2003 Yalamanchi et al.
6:704:831 Bl 3/2004 Avery 2003/0229804 Al 12/2003 Srivastava et al.
6.704.886 Bl 3/2004 Gill et al. 2003/0236834 Al 12/2003 Gottfried
6,728,748 Bl 4/2004 Mangipudi et al. 2004/0024771 Al 2/2004 Jain et al.
6.757.710 B2 6/2004 Reed 2004/0024774 Al 2/2004 Jain et al.
6769.074 B2 7/2004 Vaitzblit 2004/0024794 Al 2/2004 Jain et al.
6 793’625 B2 9/2004 Cavallaro et al. 2004/0024979 Al 2/2004 Kaminsky et al.
6.802.003 Bl 10/2004 Gross ef al. 2004/0034640 Al 2/2004 Jain et al.
6.816.907 Bl 11/2004 Maei et al. 2004/0034664 Al 2/2004 Jain et al.
6,826,182 Bl 11/2004 Parthasarathy 2004/0064548 Al 4/2004 Adams et al.
6,826,579 Bl 11/2004 Leymann et al. 2004/0093512 Al* 5/2004 Samplecooeoevivinn 713/201
6,850,893 B2 2/2005 Lipkin etal. 2004/0103195 Al 5/2004 Chalasani et al.
6,868,413 Bl 3/2005 Grindrod et al. 2004/0107125 Al 6/2004 Guheen et al.
6.882.994 B2 4/2005 Yoshimura et al. 2004/0111506 Al 6/2004 Kundu et al.
6.889.231 Bl 52005 Souder et al. 2004/0117794 Al 6/2004 Kundu
6917.046 B2 7/2005 Col, Jr. ct al. 2004/0133591 Al 7/2004 Holenstein et al.
6,925,476 Bl /2005 Multer ot al. 2004/0172385 Al* 9/2004 Dayalccceeevviniinn 707/3
6,980,988 Bl 12/2005 Demers et al. 2004/0176996 Al 9/2004 Powers et al.
7,003,531 B2 2/2006 Holenstein et al. 2004/0181476 Al 9/2004 Smith et al.
7,031,974 Bl 4/2006 Subramaniam 2004/0215858 Al* 10/2004 Armstrongetal. 710/200
7,058,622 B1* 6/2006 Tedescoccocevvvvirinennan 1 2004/0236860 Al* 11/2004 Logstonetal. ... 709/230
7,058,957 Bl 6/2006 Nguyen 2004/0268357 Al 12/2004 Joy et al.
7,065,537 B2 6/2006 Cha et al. 2005/0010545 Al 1/2005 Joseph
7,080,382 B2 7/2006 Sexton et al. 2005/0021567 Al 1/2005 Holenstein et al.
7,089,228 B2 8/2006 Arnold et al. 2005/0021771 Al 1/2005 Kachn et al.
7,095,871 B2 8/2006 Jones et al. 2005/0033809 Al 2/2005 McCarthy et al.
7,149,738 B2 12/2006 Kumar et al. 2005/0125371 Al 6/2005 Bhide et al.

US 9,128,895 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0131875 Al
2005/0165925 Al
2005/0183072 Al
2005/0193024 Al

6/2005 Riccardi et al.
7/2005 Dan et al.

8/2005 Horning et al.
9/2005 Beyer et al.
2005/0228828 Al 10/2005 Chandrasekar et al.
2005/0239476 Al 10/2005 Betrabet et al.
2005/0240649 Al* 10/2005 Elkingtonetal. ... 709/200
2005/0262205 Al 11/2005 Nikoloy et al.
2005/0267965 Al 12/2005 Heller
2005/0289175 Al 12/2005 Krishnaprasad et al.
2006/0036617 Al 2/2006 Bastawala et al.

2006/0112135 Al* 5/2006 Warshawsky 707/102

2007/0100793 Al* 5/2007 Brownetal. ... 707/2
2007/0162260 Al 7/2007 Nordstrom

2007/0226323 Al 9/2007 Halpern

2008/0147614 Al 6/2008 Tam et al.

2008/0155641 Al* 6/2008 Beavinetal. 726/1
2008/0201383 Al* 82008 Honigfort 707/200
2008/0215878 Al 9/2008 Gemmo

2009/0112809 Al 4/2009 Wolff et al.

2009/0157722 Al 6/2009 Liu et al.

2009/0239480 Al* 9/2009 Rofougaranetal. ... 455/73
2010/0082300 Al* 4/2010 Hollingsworth et al. 702/186
2010/0145929 Al* 6/2010 Burgeretal. ... 707/713

2012/0072780 Al
2012/0143919 Al
2012/0221732 Al*
2012/0271594 Al

OTHER PUBLICATIONS

3/2012 Kini et al.

6/2012 Idicula

8/2012 Waldspurger 709/226
10/2012 Yan et al.

Ying-Dar Lin et al.,—Direct Web Switch Routing with State Migra-
tion, TCP Masquerade, and Cookie Name Rewriting, Globecom
2003, IEEE Global Telecommunications Conference, Dec. 1, 2003,
IEEE, CPO 10677300, pp. 3663-3667.

Chase, Jeffrey S., et al., “Dynamic Virtual Clusters in a Grid Site
Manager,” Proceedings of the 12 IEEE International Symposium on

High Performance Distributed Computing, 2003, XP-010643715, 12
pgs.

Shiva, S.G., et al., “Modular Description/Simulation/Synthesis
Using DDL,” 19th Design Automation Conference 1982, IEEE Press,
pp. 321-329.

Skow, Eric, et al., “A Security Architecture for Application Session
Handoff,” 2002, IEEE International Conference Proceedings, Apr.
28-May 2, 2002, vol. 1 of 5, pp. 2058-2063, XP010589848.

Song, Henry, et al., “Browser State Repository Service,” Lecture
Notes in Computer Science, vol. 2414, 2002, pp. 1-14,
XP002904339.

Spiegler, Israel, “Automating Database Construction,” ACM
SIGMIS Database, vol. 14, Issue 3, Spring 1983, pp. 21-29.

Kei Kurakawa et al., “Life Cycle Design Support Based on Environ-
mental Information Sharing,” IEEE, Feb. 1-3, 1999, Proceedings
EcoDesign ’99, First International Symposium, pp. 138-142.
Gunther, Oliver et al., “MMM: A Web-Based System for Sharing
Statistical Computing Modules,” IEEE, May-Jun. 1997, vol. 1, Issue
3, pp. 59-68.

U.S. Appl. No. 10/918,054, filed Aug. 12,2004, Notice of Allowance,
Sep. 20, 2012.

Zhang et al., Binary XML Storage Query Processing in Racle 11g,
Dated Aug. 24-28, 2009 dated, Lyon, France, 12 pages.

Bremer et al., “Integrating Document and Data Retrieval Based on
XML”, dated Aug. 12, 2005, 31 pages.

Pal et al., “Indexing XML Data Stored in a Relational Database”,
Proceedings of the 30” VLDB Conference, Toronto, Canada, dated
2004, 12 pages.

U.S. Appl. No. 11/736,132, filed Apr. 17,2007, Office Action, Sep. 9,
2013.

U.S. Appl. No. 12/961,394, filed Dec. 6, 2010, Final Office Action,
Sep. 23, 2013.

U.S. Appl. No. 12/961,394, filed Dec. 6, 2010, Interview Summary,
Nov. 6,2013.

U.S. Appl. No. 12/961,394, filed Dec. 6, 2010, Advisory Action, Dec.
3,2013.

* cited by examiner

US 9,128,895 B2

Sheet 1 of 4

Sep. 8, 2015

U.S. Patent

l 'Ol

901 sseqgeled

20| wa)sAg apoN-HIn|A

US 9,128,895 B2

Sheet 2 of 4

Sep. 8, 2015

¢-¢0c

L-¢0¢

| zooz |1 G| zwoz || | zsoL |

802
WISIUBYOS|A [0U0D) 80IN0SSY

U.S. Patent

i
L-v0l

U.S. Patent Sep. 8, 2015 Sheet 3 of 4 US 9,128,895 B2

monitor a plurality of resource
usages on a node in a multi-node
system 310

determine whether one or more
resource usages in the plurality
of resource usages are
high 320

in response to determining that
one or more resource usages in the
plurality of resource usages are
high, implement one or more
resource reduction policies 330

FIG. 3

US 9,128,895 B2

Sheet 4 of 4

Sep. 8, 2015

U.S. Patent

acy

244
1SOH

MHOMLIN
1v001

8¢y

13NY3INI

9Ty
Hv TOYLNOD

J0SdNd

¥y

Z

ozy |
alc

!

v_mo\,\v,_m__.__,_ [JOV4H3INI 7014
_ NOILYJINNWINOD ¥0SS300¥d
|
|
|
|
|
|
| 0y
| sng
|
|
|
|
|

oty ! 301A30 AYOW3W
|

¥3AN3S _ 39VH0LS WOY NIVIN

| 301A30 LNdNI

——N] 7T¥

AY1dSId

¥ "Old

US 9,128,895 B2

1

INTELLIGENT FLLOOD CONTROL
MANAGEMENT

FIELD OF THE INVENTION

The present invention relates to improving performance of
computer systems, and in particular, to dynamically monitor-
ing and managing resource usages of processes in computer
systems.

BACKGROUND OF THE INVENTION

In a multi-node system, nodes may appear as a single
system to application servers and user applications. Each
node may handle its share of the workload during the normal
operation when all the nodes in the multi-node system sup-
posed to be up are in fact up. When one of the nodes fails (or
is out of service for whatever reason), a particular node may
be required to take over some, or all, of the failed node’s share
of the workload.

Unfortunately, the takeover (or failover) node may have
used its capacity for its own share of the workload to such an
extent that the node can hardly take over the failed node’s
share of the workload. For example, the takeover node may
already use 60% of CPU time for processing its own share of
the workload. Servicing the failed node’s share of the work-
load may require more than 40% of additional CPU time.
Thus, when the failed node’s share of the workload is over
flown to the takeover node, the takeover node does not have
sufficient CPU time for processing both its own share and the
failed node’s share of the workload. This may cause the
takeover node to fail.

This situation may be worsened, because the application
servers and user applications that initiate the workload may
not be aware of the fact that one or more nodes of the multi-
node system are out of service. In fact, it may appear to the
application servers and user applications that the multi-node
system is handling an ever smaller number of transactions
than before. The application servers and user applications
may increase the number of requests sent to the multi-node
system. As a result, more nodes in the multi-node system may
fail.

As clearly shown, techniques are needed for dynamically
monitoring and managing resource usages of processes in
computer systems.

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
elements and in which:

FIG. 1 illustrates an example system that comprises an
example multi-node system according to an embodiment of
the present invention;

FIG. 2 illustrates an example node that comprises an
example resource control mechanism according to an
embodiment of the present invention;

FIG. 3 is an example processing flow for dynamically
monitoring and managing resource usages of processes on an
example node according to an embodiment of the present
invention;

10

40

45

50

55

60

2

FIG. 4 is a block diagram of a computer system that may be
used to implement an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Techniques for dynamically monitoring and managing
resource usages of processes in a computer system are
described. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block dia-
gram form in order to avoid unnecessarily obscuring the
present invention.

Overview

Techniques are provided for dynamically monitoring and
managing resource usages of processes on a node of a multi-
node system. In an embodiment, a resource control mecha-
nism monitors resource usages on the node, using a variety of
process information generated on the node. Based on a plu-
rality of corresponding thresholds for the resource usages, the
resource control mechanism determines whether one or more
resource usages are high (for example, exceeding corre-
sponding thresholds for the one or more resource usages). If
that is the case, the resource control mechanism implements
a number of resource usage reduction policies to promptly
reduce the resources usages that are high. These resource
usage reduction policies may include, but are not limited to,
rejecting or throttling requests for new database connections
to be established on the node in the multi-node system, pri-
oritizing processes based on whether execution of a process
will likely result in a reduction of resource usages on the node.
Under these resource usage reduction policies, if a process
likely generates new resource usage requirements, that pro-
cess will be assigned a relatively low priority. Conversely, if a
process likely releases resources, that process will be
assigned a relatively high priority.

Other resource usage reduction policies such as batching
up a plurality of messages in a single physical message may
also be implemented when the node has high resource usages.
Example Database System

A database comprises database data and metadata that is
stored on a persistent memory mechanism, such as a set of
hard disks. Database data may be stored in one or more data
containers represented on the persistent memory mechanism.
Each container contains records. The data within each record
is organized into one or more fields. In relational database
management systems, the data containers are referred to as
tables, the records are referred to as rows, and the fields are
referred to as columns. In object-oriented databases, the data
containers are referred to as object classes, the records are
referred to as objects, and the fields are referred to as
attributes. Other database architectures may use other termi-
nology.

A database management system (“DBMS”) manages a
database. A database management system may comprise one
or more database servers. A multi-node system mentioned
above may be used to implement the database management
system. Each node in the multi-node system may host a
database server. A server, such as a database server, is a
combination of integrated software components and an allo-
cation of computational resources, such as memory, a node,
and processes on the node for executing the integrated soft-
ware components on a processor, the combination of the
software and computational resources being dedicated to per-
forming a particular function on behalf of one or more clients.

US 9,128,895 B2

3

User applications as database clients interact with a data-
base server by submitting to the database server commands
that cause the database server to perform operations on data
stored in a database. A database command may be in the form
of'a database statement that conforms to a database language.
One non-limiting database language supported by many data-
base servers is SQL, including proprietary forms of SQL
supported by such database servers as Oracle, (e.g. Oracle
Database 10 g). SQL data definition language (“DDL”)
instructions are issued to a database server to create or con-
figure database objects, such as tables, views, or complex data
types.

Example Multi-Node System

According to an embodiment of the present invention, the
techniques may be performed by a multi-node system 102 as
illustrated in FIG. 1, which comprises multiple intercon-
nected nodes (e.g., 104-1 and 104-2). The system 102 may
provide user applications access to a database 106. These user
applications may run on application servers that are opera-
tively linked to the multi-node system 102. The nodes (104) in
the multi-node system 102 may be in the form of computers
(e.g. work stations, personal computers) interconnected via a
network. Alternatively, the nodes (104) may be nodes of a
grid, where each node is interconnected on a rack. The grid
may host multiple multi-node systems. Each node 104 may be
a separate physical computer, or a separate domain (which,
for example, may run inside a virtual machine) among a
plurality of domains that partition a physical computer. In
embodiments where some of the nodes 104 may be domains,
each domain behaves independently like a separate physical
computer and constitutes a separate logical computer.

Each node 104 provides a plurality of resources to pro-
cesses running on the node. As used herein, a resource may be
a physical resource such as CPU time, main memory space,
network I/O bandwidth, disk I/O usage, cache size, etc. A
resource may also be a logical resource such as latches, sema-
phores, shared memory, or special data structures, etc.

For the purpose of illustration only, the node 104-1 com-
prises three resources (108-1 through 108-3). For example,
the resource 108-1 may be CPU time, the resource 108-2 may
be RAM space, and the resource 108-3 may be latches for
shared data blocks of the database 106.

In some embodiments, node 104-1 is a database instance
on which a number of database processes and non-database
processes run. These processes may have different life spans
and run for different time periods. Each of these processes
may evolve in different stages that use different combinations
of resources and different amounts of the resources. For
example, a process that communicates messages between
nodes may use CPU time and RAM space, but may not use
latches for shared data blocks of the database 106, while
another process that performs database checkpoint operations
may use CPU time, RAM space, and, at some points of time,
latches. In some embodiments, a resource control mechanism
(e.g., 208 of FIG. 2) may be implemented on the node 104-1
to determine whether, when, and how much a process should
be allowed to use various amounts of various resources 108
on the node 104-1 during a lifecycle of the process. An
amount of a resource allocated to the process by the resource
control mechanism 208 may be configured and changed pro-
grammatically or manually when the process starts up or
while the process is running.

As used herein, the term “a process uses or incurs a
resource” means that a certain amount of the resource is
incurred (or used) by the process to the exclusion of other
processes, regardless of whether the process is actively using
any, or all, of that amount of the resource or not. The term “a

10

15

20

25

30

35

40

45

50

55

60

65

4

process frees a resource” means that a certain amount of the
resource previously incurred (or used) by the process has
been made available on the node from a particular point of
time (e.g., when the operating system or the database system
carries out a free resource function call).

In some instances, a resource is automatically incurred by
a process. For example, CPU time may be automatically
incurred when a process is scheduled into an executing state
on the node. An initial amount of memory space may also be
automatically incurred by a process for storing program code
and data when the process starts up on the node. Likewise, a
resource may be automatically freed by a process, for
example, when the process terminates on the node.

In contrast, a resource may also be incurred by a process if
the process makes a request for the resource and if the request
for the resource is granted by the resource control mecha-
nism. For example, when a process needs additional heap
memory in the middle of running, the process may use a
memory allocation call such as “malloc()’ to make a request
for a certain amount of additional memory. When the request
is granted by the resource control mechanism, a certain addi-
tional amount of memory is incurred by the process from that
point on until the process releases some, or all, of that amount
of memory.

In some instances, a request for a resource needs not to be
explicit. For example, when a process wishes to exclusively
access a shared data block of the database 106 by making a
call “retreiveDataBlockforReadWrite()”, a request for a latch
for exclusive write access to the shared data block may be
implicitly made, even though the call is only explicitly
requesting the shared data block. When the call returns suc-
cessfully, the latch for exclusive write access implicitly
requested is granted by the resource control mechanism.

In some embodiments, a certain amount of a resource, as
required by the process during its lifecycle, may be incurred
by a process at once. In some other embodiments, a certain
amount of a resource may be gradually or incrementally
incurred by a process. Similarly, in some embodiments, a
certain amount of a resource may be freed by a process at
once. In some other embodiments, a certain amount of a
resource may be gradually or incrementally freed by a pro-
cess. It should be noted that incurring a certain amount of a
resource by a process may or may not be symmetric or cor-
related with freeing the same amount of the resource by the
process.

Example Resource Control Mechanism

FIG. 2 illustrates an example embodiment in which the
resource control mechanism 208, in conjunction with the
operating system (e.g., UNIX) and/or the database system
software deployed on the node 104-1, monitors and controls
resource usages (e.g., 204-1 through 204-3 for resources
108-1 through 108-3 as illustrated in FIG. 1 and FIG. 2) by
processes running on the node 104.

As used herein, the term “resource usage” refers to an
aggregated number, an aggregated amount, an aggregated
percentage, or otherwise an aggregated measure that indi-
cates how much of a resource has been incurred by all pro-
cesses running on the node 104-1. Upon determining a
resource usage for a resource, the resource control mecha-
nism may use other information at its disposal (for example,
system configuration information) to further determine how
much of the resource remains available. For example, a
resource usage for CPU time at a particular time may be
determined as 40%, which indicates that 40% of CPU time as
provided by one or more processors on the node 104-1 has
been incurred by the processes on the node 104-1 at the

US 9,128,895 B2

5

particular time. The resource control mechanism determines
therefore that 60% of CPU time remains available to serve
new request for the resource.

Example Normal Mode

The resource control mechanism 208 may operate in two
different modes depending on current resource usages on the
node 104. In the first operational mode (or simply normal
mode), the resource control mechanism 208 monitors a group
of resources 108 as shown in FIG. 2 and determines whether
any resource usage has exceeded a resource usage threshold
206. As illustrated in FIG. 2, each resource (e.g., 108-1
through 108-3) may have a resource usage threshold (i.e.,
206-1 through 206-3, respectively). As used herein, the term
“threshold” or “resource usage threshold” refers to a number,
an amount, a percentage, or otherwise a quantity that indi-
cates a critical point separating a normal region of resource
usage for a resource from a high-usage region of resource
usage for the resource. For example, a threshold may be 40%
for resource usage of CPU time. A resource usage for CPU
time that exceeds 40% is in a high-usage region of resource
usage for CPU time, while another resource usage for CPU
time that is below 40% is in a normal region of resource usage
for CPU time.

Threshold for a resource 108 may be pre-configured and/or
reconfigured manually or programmatically. In some
embodiments, other configuration data on the node 104-1
may beused to determine thresholds for various resources on
the node 104-1. For example, if the node 104-1 is responsible
for taking over entire work from another node 104 in the
multi-node system 102, thresholds for resource usages may
be set at various values around 40%, allowing some room for
any unexpected usages on the node 104-1. Thus, when the
other node fails, the node 104-1 is still able to take over all the
work without causing itself out-of-service. In alternative con-
figurations, the node 104-1 may not be assigned any respon-
sibility for taking over another failed node, or may be
assigned with only a portion of work of another failed node.
Thresholds for various resources may be set accordingly
based on these and other factors.

In some embodiments, in the normal mode, the resource
control mechanism 208 allows resources to be incurred so
long as the resources are still in the normal regions. In some
embodiments, a total usable amount of a resource is not fixed
(unlike CPU time, for example, whose total usable amount is
100%). In these embodiments, the resource control mecha-
nism 208 may increase or decrease the total usable amount
depending on actual resource usage of the resource. For
example, a buffer cache on a node 104 that caches previously
retrieved data blocks may be increased or decreased to certain
extents by the resource control mechanism 208 depending on
actual resource usages of the buffer cache. In some embodi-
ments, for a resource of which the resource control mecha-
nism 208 can increase and decrease a total usable amount, a
determination that resource usage of a resource is in a high-
usage region occurs after the resource control mechanism 208
has increased the total usable amount of the resource to a
maximum.

In some embodiments, node-wise resource usage informa-
tion (shown as 202-1 of FIG. 2) such as stats, trace, and log
files are will be, or alternatively and/or additionally, has
already been, generated on the node 104-1. This node-wise
resource usage information 202-1 may indicate how much
memory or how many semaphores a process has used or has
been using, how much heap memory the process has incurred
or has been incurring, how many messages at what sizes the
process has sent or has been sending to other processes on the
node 104-1 or other nodes 104, etc. In some embodiments

10

15

20

25

30

35

40

45

50

55

60

65

6

where the node 104-1 is a database node in a multi-node
system 102 as illustrated in FIG. 1, database-specific resource
usage information (shown as 202-2 of FIG. 2) will be, or
alternatively and/or additionally, has already been, generated
on the node 104-1. This database-specific resource usage
information 202-2 may indicate how many transactions a
database process has processed or has been processing, how
much buffer cache the database process has consumed or has
been consuming, what latches for shared data blocks the
database process has secured or is waiting to secure, etc. In
some embodiments, the resource control mechanism com-
prises resource usage determination logic to interact with the
operating system and/or database system (through function
calls, for example) to gather resource usage information at a
given runtime.

As illustrated in FIG. 2, the resource control mechanism
may use the resource usage information (202) and the
resource usage determination logic to determine/establish
resource usages (e.g., 204-1 through 204-3) for resources
(i.e., 108-1 through 108-3, respectively) on the node 104-1 at
a given time. Based on the resource usages 204, the resource
control mechanism determines whether one or more of the
resources cross one or more corresponding thresholds 206
from normal regions to high-usage regions.

Example Safe Mode

When one or more of the resources that are monitored by
the resource control mechanism 208 cross corresponding
thresholds 206 from normal regions to high-usage regions,
the resource control mechanism 208 may transition from the
normal mode to a second operational mode (or simply safe
mode) to distribute resources on the node 104-1 intelligently,
to protect the node 104-1 from further deterioration in terms
of'resource usages and, and to reduce high resource usages on
the node 104-1 so that all resource usages on the node 104-1
return to normal regions. In the safe mode, the resource con-
trol mechanism 208 implements one or more resource usage
reduction policies to help restore the node 104-1 into the
normal mode (in which all the resource usages will be in
normal regions). In addition, the resource control mechanism
208 continues to monitor resource usages of the resources to
determine whether the usages have indeed been restored into
the normal regions. If so, the resource control mechanism 208
resumes operating in the normal mode.

Denying Requests for New Database Connections

In some embodiments, in the database system imple-
mented by the multi-node system 102, when a user applica-
tion on an application server (which may be remotely located
from the multi-node system 102) needs to perform one or
more database operations, the user application first requests a
connection (or to be attached) with a session process on a
node (e.g., 104-1) of the multi-node system. This session
process may be one of many such processes in a session
process pool. Once connected/attached to the session process
(i.e., a new session is started), the user application may issue
database commands (e.g., SQL statements) to the session
process. The session process in turn secures necessary
resources on the node 104-1 to carry out corresponding data-
base operations as instructed by the database commands from
the user application. In some embodiments, to carry out these
database operations, not only direct resources that are neces-
sary to carry out the operations are needed, but also secondary
operations (e.g., logging), hence additional resources, may be
incurred.

In some embodiments, when the user application finishes
and disconnects (or is detached; hence the existing session is
ended) from the session process, any resources still held by
the session process for serving the user application are freed.

US 9,128,895 B2

7

Thus, during a finite period between the attachment and the
detachment of the user application, the session process incurs
a number of resources. These resources are incurred if and
when a session process is allowed to be connected with a user
application to process the latter’s database commands.

In some embodiments, in the safe mode, the resource con-
trol mechanism 208 is operable to deny (or cause to deny)
requests for new database connections. Thus, resources that
could be incurred by new user applications can be avoided.
Instead, resources may be used for existing connections that
have been previously allowed. As a result, session processes
that serve the existing connections can complete their respec-
tive operations and to free the incurred resources at the
completion of the operations, relatively promptly, thereby
helping the node 104-1 return to the normal mode.

In some embodiments, in the safe mode, instead of denying
all requests for new database connections as previously
described, the resource control mechanism 208 is operable to
allow (or cause to allow) only a small number of requests (say
five per minute instead of a higher number per minute) for
new database connections.

Prioritizing Processes

In some embodiments, in the safe mode, processes with
higher priority levels may be allowed to continue their opera-
tions as usual. In some embodiments, in the safe mode, the
resource control mechanism 208 is operable to prioritize
requests for resources that may or may not be in high-usage
regions. As used herein, the term “prioritize” means assigning
values to a priority level attribute that is used by the node to
determine whether, when, and what resources should be
granted to a process. An example of a priority level attribute
may be an operating system priority. Generally speaking, the
higher a process’s priority level, the more likely the process is
to be granted access to resources. Particularly, a process that
is of a higher priority level may be allowed to proceed before
alower priority level. A process that uses no or little resources
whose usages are in high-usage regions may be allowed to
proceed before other processes with the same priority level. A
process that is holding a resource for which many other pro-
cesses are waiting may be re-assigned with a high priority
level so that the resource can be quickly released to avoid
deadlock situations. Conversely, a process that is holding
resources for which no other, or very few, processes are
waiting may be downgraded to a low priority level, or alter-
natively maintain its relatively low priority level.

For example, requests for new database connections may
be given a relatively low priority level so that processes asso-
ciated with the requests are allowed at a relatively slow rate on
the node 104-1, as compared with that in the normal mode.

On the other hand, a process that has secured some, or all,
of the needed resources may be given a higher priority level
by the resource control mechanism 208 so that the process
may finish its operation and release the resources the process
has incurred. This process may have already held latches or
other resources that are being waited by other processes
before the operational mode transitions from the normal
mode to the safe mode. When the process that has secured a
relatively large amount of resources is given a high priority
level to finish its work in the safe mode, likelihood of dead-
locks on the resources may be avoided or significantly
reduced.

A process that serves a critical or important function on the
node 104-1 may be given high priority levels and allowed to
proceed before other processes. For example, a background
process (e.g., a process that determines which process obtains
what type of latches for which shared data block of the data-
base 106) on which many foreground processes (e.g., a ses-

10

15

20

25

30

35

40

45

50

55

60

65

8

sion process to which a user application sends database com-
mands) depend may be given a priority level so that the
important background process is able to incur needed
resources more readily than the foreground processes. Prior-
ity levels of these processes may be manually or program-
matically provided on the node 104-1. Priority levels of these
processes may also be determined based in part on runtime
information.

In some embodiments, database-specific resource usage
information 202-2 may identify which process currently
holds a resource such as a latch and which other processes
currently wait for the held resource. Based on this runtime
information, the resource control mechanism 208 may priori-
tize the processes such that the process currently holding the
resource is allowed to proceed with a higher priority level
than those of the waiting processes.

Terminating Processes

In some embodiments, in the safe mode, the resource con-
trol mechanism 208 may determine that out of all processes
that are running on the node 104-1, some processes are non-
critical. Examples of non-critical processes include, but are
not limited to garbage collection processes, informational
event generation processes, etc. In some embodiments, these
non-critical processes may be terminated in order to free up
resources currently incurred by the processes.

In some situations, even if a process is not non-critical,
nevertheless the process may be terminated. For example,
session processes that have started but are still in initial stages
of'waiting for or incurring resources may be terminated by the
resource control mechanism 208 in order to free up resources
currently incurred by the processes and to prevent further
resources from being incurred. In some embodiments, termi-
nation of processes on the node 104-1 may cause errors to be
returned to user applications. In some embodiments, the user
application may be programmed to retry the same requests
with the multi-node system 102. These retried requests may
overflow to other nodes 104 in the multi-node system 102,
instead of the node 104-1, which is presently operating in the
safe mode. For example, software middleware (for example,
clusterware) may be deployed in the multi-node system 102
to dispatch requests among the nodes 104 in the system 102.
When received by the multi-node system 102, a retried
request may be redirected by the clusterware to another node
104, other than node 104-1.

Reducing Input/Output Operations

In some embodiments, in the safe mode, the resource con-
trol mechanism 208 may be operable to reduce, or cause to
reduce, the number of physical messages that are sent
between processes on the same node (i.e., 104-1) or different
nodes 104. For example, instead of immediately sending a
message in a function call issued by a process on the node
104-1, which would cause a separate 1/O operation for each
such message, the resource control mechanism may place the
message in a message buffer. When the message buffer
exceeds a certain size or (alternatively and/or optionally)
when a certain time period has elapsed, messages in the
message buffer may be sent in a single physical message that
may only involve minimum I/O operations.

In some embodiments, in the safe mode, the resource con-
trol mechanism 208 may be operable to reduce, or cause to
reduce, the number of checkpoints. When a checkpoint is
issued, dirty blocks in the buffer cache are written to datafiles
(which may comprise a number of data blocks) of the data-
base 106 and the latest commit data is also updated in the
datafiles of the database 106. Since a checkpoint may cause a
number of I/O operations and need large amounts of
resources to process, the reduction of checkpoints in the safe

US 9,128,895 B2

9

mode alleviate resource usages of the respective resources
that are needed to process the checkpoint.

In the safe mode, the resource control mechanism 208
continues to monitor the group of resources 108 as shown in
FIG. 2 and determines whether each of the resource moni-
tored is operating in a normal region. If so, the resource
control mechanism 208 may transition the node 104-1 from
the safe mode to the normal mode.

Example Process

FIG. 3 illustrates an example process under the new tech-
niques. In block 310, a resource control mechanism (e.g., 208
of FIG. 2) monitors a plurality of resource usages 108 on a
node (e.g., 104-1) in a multi-node system (e.g., 102). The
plurality of resource usages that are monitored by the
resource control mechanism 208 may include a resource
usage 204 for a resource 108, on the node 104-1, such as the
aforementioned CPU time, memory, network bandwidth,
database transaction processing capacity, etc. In some
embodiments, to monitor the plurality of resource usages 204
on the node 104-1 in the multi-node system 102, the resource
control mechanism includes analyzing resource usage data
(e.g.,202-1 and 202-2 of FIG. 2) generated on the node 104-1.
The resource usage data may include resource usage data
(e.g., 202-1) generated by the operating system deployed on
the node 104-1, or database-specific resource usage data (e.g.,
202-2) generated by database system software deployed on
the node 104-1.

In block 320, the resource control mechanism 208 deter-
mines whether one or more resource usages (e.g., 204-1) in
the plurality of resource usages (e.g., 204-1 through 204-3)
are high (i.e., in high-usage regions). For example, initially,
the resource control mechanism 208 may operate in a normal
mode, as previously described, as all the monitored resource
usages may be normal (i.e., in normal regions). Once any of
the resource usages moves into a high-usage region, the
resource control mechanism 208 may transition from the
normal mode to a safe mode, as previously described. In the
safe mode, the resource control mechanism 208 implements a
plurality of resource usage reduction policies to help restore
the node 104-1 into the normal mode. One resource usage
reduction policy may be to reject requests for new database
connections. In some embodiments, if a request for a new
database connection were granted, the new database connec-
tion requested would be established between a user applica-
tion that made the request and a session process in a session
process pool on the node 104-1. In turn, various amounts of
resources would be incurred by the user application and the
session process to carry out further operations in connection
with the user application. As described previously, various
resource usage reduction policies may be implemented by the
resource control mechanism 208 to speed up the transition
from the safe mode to the normal mode on the node 104-1.

In block 330, in response to determining that one or more
resource usages in the plurality of resource usages 204 are
high, the resource control mechanism 208 transitions the
operational mode from the normal mode to the safe mode, and
implements one or more resource usage reduction policies for
the purpose of restoring the node to the normal node. In some
embodiments, some resource usage reduction policies may
be implemented by the resource control mechanism 208 first.
If the node 104-1 continues to experience high resource
usages, more resource usage reduction policies may be imple-
mented by the resource control mechanism 208.

In some embodiments, in the safe mode, the resource con-
trol mechanism 208 rejects at least one request for a new
database connection. By rejecting such a request, the resource
control mechanism 208 helps other existing database connec-

40

45

55

10

tions finish their work faster and hence release incurred
resources faster than otherwise. In some embodiments, the
rejected request may be re-routed by cluster-wide software
(such as the above discussed clusterware) deployed in the
multi-node system 102 or by the user application to a different
node 104.

In some embodiments, the resource control mechanism
208 may continuously monitor and influence resource usages
incurred by individual processes, a type of processes, a col-
lection of processes, and/or a particular subsystem on the
node 104-1.

Hardware Overview

FIG. 4 is ablock diagram that illustrates a computer system
400 upon which an embodiment of the invention may be
implemented. Computer system 400 includes a bus 402 or
other communication mechanism for communicating infor-
mation, and a processor 404 coupled with bus 402 for pro-
cessing information. Computer system 400 also includes a
main memory 406, such as a random access memory (RAM)
or other dynamic storage device, coupled to bus 402 for
storing information and instructions to be executed by pro-
cessor 404. Main memory 406 also may be used for storing
temporary variables or other intermediate information during
execution of instructions to be executed by processor 404.
Computer system 400 further includes a read only memory
(ROM) 408 or other static storage device coupled to bus 402
for storing static information and instructions for processor
404. A storage device 410, such as a magnetic disk or optical
disk, is provided and coupled to bus 402 for storing informa-
tion and instructions.

Computer system 400 may be coupled via bus 402 to a
display 412, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 414, includ-
ing alphanumeric and other keys, is coupled to bus 402 for
communicating information and command selections to pro-
cessor 404. Another type of user input device is cursor control
416, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 404 and for controlling cursor movement
ondisplay 412. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.

The invention is related to the use of computer system 400
for implementing the techniques described herein. According
to an embodiment of the invention, those techniques are per-
formed by computer system 400 in response to processor 404
executing one or more sequences of one or more instructions
contained in main memory 406. Such instructions may be
read into main memory 406 from another computer-readable
medium, such as storage device 410. Execution of the
sequences of instructions contained in main memory 406
causes processor 404 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used in place of or in combination with software instruc-
tions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 404 for execution. Such a medium may take
many forms, including but not limited to, non-volatile media
and volatile media. Non-volatile media includes, for
example, optical or magnetic disks, such as storage device
410. Volatile media includes dynamic memory, such as main
memory 406.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic

US 9,128,895 B2

11

tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, or any other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 404 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 400 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 402. Bus 402 carries the data to main memory 406,
from which processor 404 retrieves and executes the instruc-
tions. The instructions received by main memory 406 may
optionally be stored on storage device 410 either before or
after execution by processor 404.

Computer system 400 also includes a communication
interface 418 coupled to bus 402. Communication interface
418 provides a two-way data communication coupling to a
network link 420 that is connected to a local network 422. For
example, communication interface 418 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 418 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 420 typically provides data communication
through one or more networks to other data devices. For
example, network link 420 may provide a connection through
local network 422 to a host computer 424 or to data equip-
ment operated by an Internet Service Provider (ISP) 426. ISP
426 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 428. Local network 422
and Internet 428 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 420 and
through communication interface 418, which carry the digital
data to and from computer system 400, are exemplary forms
of carrier waves transporting the information.

Computer system 400 can send messages and receive data,
including program code, through the network(s), network
link 420 and communication interface 418. In the Internet
example, a server 430 might transmit a requested code for an
application program through Internet 428, ISP 426, local
network 422 and communication interface 418.

The received code may be executed by processor 404 as it
is received, and/or stored in storage device 410, or other
non-volatile storage for later execution. In this manner, com-
puter system 400 may obtain application code in the form of
a carrier wave.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what is the
invention, and is intended by the applicants to be the inven-
tion, is the set of claims that issue from this application, in the
specific form in which such claims issue, including any sub-

25

30

35

40

45

50

55

60

65

12

sequent correction. Any definitions expressly set forth herein
for terms contained in such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not
expressly recited in a claim should limit the scope of such
claim in any way. The specification and drawings are, accord-
ingly, to be regarded in an illustrative rather than a restrictive
sense.

What is claimed is:

1. A computer-implemented method, comprising:

monitoring a plurality of resource usages on a node;

granting to a plurality of database processes, by a resource
control mechanism of the node, one or more locks, each
lock of said one or more locks granting access to one or
more specified shared data blocks of a database;

determining whether a resource usage in the plurality of
resource usages exceeds a resource usage threshold; and

when the resource usage in the plurality of resource usages
exceeds the resource usage threshold, implementing one
or more resource usage reduction policies, by the
resource control mechanism, to restrict access to one or
more particular shared data blocks of the database by
delaying or denying one or more requested locks corre-
sponding to the one or more particular shared data
blocks;

wherein the method is performed by one or more comput-

ing devices.

2. The computer-implemented method of claim 1, wherein
the plurality of resource usages includes a resource usage
selected from network bandwidth usage, memory usage and
CPU usage.

3. The computer-implemented method of claim 1, wherein
implementing the one or more resource usage reduction poli-
cies comprises prioritizing specific processes of the plurality
of database processes based on one or more secured locks
already granted to the specific processes by the resource
control mechanism.

4. The computer-implemented method of claim 1, wherein
implementing the one or more resource usage reduction poli-
cies comprises reducing input operations and output opera-
tions between the plurality of database processes by storing a
plurality of messages in at least one buffer and sending mes-
sages stored in a selected buffer of the at least one buffer ina
single physical message.

5. The computer-implemented method recited in claim 1,
wherein the one or more locks comprise one or more exclu-
sive write latches.

6. The computer-implemented method of claim 1, wherein
implementing the one or more resource usage reduction poli-
cies comprises rejecting requests for new database connec-
tions to the database.

7. The computer-implemented method of claim 1, wherein
implementing the one or more resource usage reduction poli-
cies comprises prioritizing specific processes of the plurality
of'database processes based on whether latches granted to the
specific processes are for data blocks in high usage regions.

8. The computer-implemented method of claim 1, wherein
implementing the one or more resource usage reduction poli-
cies comprises terminating a specific process requesting a
latch from the resource control mechanism.

9. The computer-implemented method of claim 1, wherein
the plurality of resource usages comprises at least one data-
base-specific resource usage, wherein monitoring the at least
one database-specific resource usage comprises analyzing
database-specific resource usage data generated by database
system software deployed on the node.

US 9,128,895 B2

13

10. The computer-implemented method of claim 1,
wherein the plurality of resource usages comprises at least
one database-specific resource usage,

wherein when the resource usage in the plurality of

resource usages exceeds the resource usage threshold,
the node transitions from a first operating state to a
second operating state;
wherein the one or more resource usage reduction policies
implemented by the resource control mechanism to
restrict access to the one or more particular shared data
blocks of the database are implemented in the second
operating state.
11. A non-transitory computer-readable storage medium
storing one or more sequences of instructions which, when
executed by one or more processors, causes the one or more
processors to perform:
monitoring a plurality of resource usages on a node;
granting to a plurality of database processes, by a resource
control mechanism of the node, one or more locks, each
lock of said one or more locks granting access to one or
more specified shared data blocks of a database;

determining whether a resource usage in the plurality of
resource usages exceeds a resource usage threshold; and

when the resource usage in the plurality of resource usages
exceeds the resource usage threshold, implementing one
or more resource usage reduction policies, by the
resource control mechanism, to restrict access to one or
more particular shared data blocks of the database by
delaying or denying one or more requested locks corre-
sponding to the one or more particular shared data
blocks.

12. The non-transitory computer-readable storage medium
of'claim 11, wherein the plurality of resource usages includes
a resource usage selected from network bandwidth usage,
memory usage and CPU usage.

13. The non-transitory computer-readable storage medium
of claim 11, wherein implementing the one or more resource
usage reduction policies comprises prioritizing specific pro-
cesses of the plurality of database processes based on one or
more secured locks already granted to the specific processes
by the resource control mechanism.

14. The non-transitory computer-readable storage medium
of claim 11, wherein implementing the one or more resource
usage reduction policies comprises reducing input operations

20

25

30

35

40

14

and output operations between the plurality of database pro-
cesses by storing a plurality of messages in at least one buffer
and sending messages stored in a selected buffer of the at least
one buffer in a single physical message.

15. The non-transitory computer-readable storage medium
recited in claim 11, wherein the one or more locks comprise
one or more exclusive write latches.

16. The non-transitory computer-readable storage medium
of'claim 11, wherein implementing the one or more resource
usage reduction policies comprises rejecting requests for new
database connections to the database.

17. The non-transitory computer-readable storage medium
of'claim 11, wherein implementing the one or more resource
usage reduction policies comprises prioritizing specific pro-
cesses of the plurality of database processes based on whether
latches granted to the specific processes are for data blocks in
high usage regions.

18. The non-transitory computer-readable storage medium
of'claim 11, wherein implementing the one or more resource
usage reduction policies comprises terminating a specific
process requesting a latch from the resource control mecha-
nism.

19. The non-transitory computer-readable storage medium
of claim 11, wherein the plurality of resource usages com-
prises at least one database-specific resource usage, wherein
monitoring the at least one database-specific resource usage
comprises analyzing database-specific resource usage data
generated by database system software deployed on the node.

20. The non-transitory computer-readable storage medium
of claim 11, wherein the plurality of resource usages com-
prises at least one database-specific resource usage,

wherein the one or more sequences of instructions include

instructions which, when executed by the one or more
processors, causes the one or more processors to per-
form: when the resource usage in the plurality of
resource usages exceeds the resource usage threshold,
transitioning the node from a first operating state to a
second operating state;

wherein the one or more resource usage reduction policies

implemented by the resource control mechanism to
restrict access to the one or more particular shared data
blocks of the database are implemented in the second
operating state.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,128,895 B2 Page 1 of 1
APPLICATION NO. : 12/389306

DATED : September 8, 2015

INVENTOR(S) : Chan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page 3, item [56], column 2, line 22, delete “Racle” and insert -- Oracle --, therefor.

Signed and Sealed this
Seventh Day of June, 2016

Debatle 7

Michelle K. Lee
Director of the United States Patent and Trademark Office

